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SUMMARY

The focus of this paper is on the numerical solution of large sparse non-linear systems of algebraic
equations on parallel computers. Such non-linear systems often arise from the discretization of non-linear
partial di�erential equations, such as the Navier–Stokes equations for �uid �ows, using �nite element
or �nite di�erence methods. A traditional inexact Newton method, applied directly to the discretized
system, does not work well when the non-linearities in the algebraic system become unbalanced. In
this paper, we study some preconditioned inexact Newton algorithms, including the single-level and
multilevel non-linear additive Schwarz preconditioners. Some results for solving the high Reynolds
number incompressible Navier–Stokes equations are reported. Copyright ? 2002 John Wiley & Sons,
Ltd.
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1. INTRODUCTION

Newton’s method is one of the most popular techniques for solving large non-linear systems
of equations in engineering applications due to the fact that the method is easy to implement,
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especially in its Jacobian-free Newton–Krylov form, and converges quickly if the starting point
is inside the domain of convergence. However, it is well-known that the radius of the domain
of convergence of Newton’s method is inversely proportional to the relative non-linearity of
the function; i.e. as the relative non-linearity increases the domain of convergence shrinks,
and as a result, �nding a good starting point becomes very di�cult [1]. Many globalization
techniques have been developed in order to �nd a good starting point, such as the line search
and trust region methods [1], continuation methods [2], mesh sequencing methods [3], etc.
In this paper, we present a di�erent approach that increases the domain of convergence of
Newton’s method by reducing the non-linearity of the function.
Consider a given non-linear function F : Rn→Rn. We are interested in calculating a vector

u∗∈Rn, such that

F(u∗)=0 (1)

starting from an initial guess u(0)∈Rn. Here F =(F1; : : : ; Fn)T, Fi=Fi(u1; : : : ; un), and u=(u1;
: : : ; un)T. Inexact Newton algorithms (IN) [1, 4] are commonly used for solving such systems.
In this paper, we work in the framework of non-linearly preconditioned inexact Newton
algorithms (PIN), recently introduced in Reference [5]. In other words, we try to �nd the
solution u∗ of Equation (1) by solving an equivalent system of non-linear equations

F(u∗)=0 (2)

Equations (1) and (2) are equivalent in the sense that they have the same solution. Other
than having the same solution, the non-linear functions F( ) and F( ) may have completely
di�erent forms.

2. SINGLE-LEVEL NON-LINEAR ADDITIVE SCHWARZ PRECONDITIONING

In this section, we describe a non-linear preconditioner based on the additive Schwarz method
[6, 7]. Let

S=(1; : : : ; n)

be an index set; i.e. one integer for each unknown ui and Fi. We assume that S1; : : : ; SN is a
partition of S in the sense that

N⋃

i=1
Si= S; and Si⊂ S

Here, we allow the subsets to have overlap. Let ni be the dimension of Si; then, in general,

N∑

i=1
ni¿n

Using the partition of S, we introduce subspaces of Rn and the corresponding restriction and
extension matrices. For each Si we de�ne Vi⊂Rn as

Vi= {v | v=(v1; : : : ; vn)T∈Rn; vk =0; if k �∈ Si}
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and a n×n restriction (also extension) matrix ISi whose kth column is either the kth column
of the n×n identity matrix In×n if k ∈ Si or zero if k �∈Si. Note that the matrix ISi is always
symmetric and the same matrix can be used as both restriction and extension operator. Many
other forms of restriction/extension are available in the literature; however, we only consider
the simplest form in this paper.
Using the restriction operator, we de�ne the subdomain non-linear function as

FSi = ISiF

We next de�ne the major novel feature of the algorithm, namely the non-linearly precon-
ditioned function. For any given v∈Rn, de�ne Ti(v)∈Vi as the solution of the following
subspace non-linear system:

FSi(v− Ti(v))=0
for i=1; : : : ; N . We introduce a new function

F(1)(u)=
N∑

i=1
Ti(u) (3)

which we refer to as the non-linearly preconditioned F(u). The one-level non-linear additive
Schwarz preconditioned inexact Newton algorithm (ASPIN or ASPIN(1)) is de�ned as: Find
the solution u∗ of (1) by solving the non-linearly preconditioned system

F(1)(u)=0 (4)

with an inexact Newton method using u(0) as the initial guess. As shown in Reference [5],
ASPIN(1) is non-linearly scalable, but the number of iterations in the global linear solver
increases as the number of subdomains (or the number of processors, as in our implementation)
increases. A multilevel version of ASPIN(1) is therefore introduced below, which is scalable
both non-linearly and linearly.

3. TWO-LEVEL NON-LINEAR ADDITIVE SCHWARZ PRECONDITIONING

In this section, we describe a parallel non-linear preconditioner based on the two-level additive
Schwarz method [6, 7]. The focus is on the construction of the coarse space operator. We
refer to the non-linear algebraic system (1) as the �ne system which has n unknowns and n
equations. We also need a coarse system,

Fc(uc∗)=0 (5)

which is a non-linear algebraic system with nc unknowns and nc equations. The coarse and
�ne functions Fc(uc) and F(u) approximate each other in a certain sense.
We next de�ne the grid transfer operators. Note that our de�nitions are quite general; for

example, the coarse and �ne grids need not be nested. Let Sc = (1; : : : ; nc) be an index set, i.e.
one integer for each unknown of the coarse system, and assume that Sc1 ; : : : ; S

c
N is a partition

of Sc in the sense that
⋃N
i=1 S

c
i = S

c. For simplicity, we partition the �ne and the coarse
systems into the same number of subsets. Also for simplicity, in our parallel implementation,
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we allocate the subsystems corresponding to the index sets Si, and Sci to the same processor.
We de�ne the subdomain �ne-to-coarse restriction operator as Ri : Si→ Sci , in the sense that
for each vector vi ∈Vi, there is a unique vector vci ∈V ci , such that

vci =Rivi

where Ri is a ni by nci matrix. In a similar way, we can introduce an extension operator from
the coarse subspace Sci to the �ne subspace Si, Ei : Si→ Sci . In practice, Ei is usually taken as
the transpose of the matrix Ri. Even though the subsets Sci and S

c
j may overlap each other, the

restriction operators Ri and Rj are consistent in the sense that for any v∈Rn, if k ∈ Sci ∩ Scj ,
then

(Riv)k =(Rjv)k

where ( )k indicates the value of the kth component of the vector. We de�ne a global �ne-
to-coarse restriction operator Rc : Rn→Rnc as follows: For any v∈Rn, the kth component of
Rcv is de�ned as

(Rcv)k =(Riv)k if k∈Sci
A global coarse to �ne extension operator Ec can be de�ned as the transpose of Rc. To de�ne
the coarse function T0 : Rn→Rn, we �rst introduce a projection T c : Rn→Rnc as follows: For
any given v∈Rn, T cv satis�es the coarse non-linear system

Fc(T c(v))=RcF(v) (6)

We assume (6) has a unique solution. Associated with T c, we de�ne an operator T0 : Rn→Rn

by

T0(v)=EcT c(v) (7)

Suppose that T0 is given as in (7); it is easy to see that T0(u∗) can be computed without
knowing the exact solution u∗ itself. In fact, from (6), we have

T0(u∗)=Ecuc∗

which is the exact solution of the coarse system (5). Throughout this paper, we assume
that the coarse solution uc∗ is given, through a pre-processing step. We can introduce a new
non-linear function Rn→Rn by

F(2)(u)=T0(u)− T0(u∗) +
N∑

i=1
Ti(u) (8)

which we refer to as the non-linearly preconditioned F(u). The two-level non-linear additive
Schwarz preconditioned inexact Newton algorithm (ASPIN(2)) is de�ned as follows: Find the
solution u∗ of (1) by solving the non-linearly preconditioned system

F(2)(u)=0 (9)

with an inexact Newton method using u(0) as the initial guess.
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4. A BRIEF REVIEW OF INEXACT NEWTON METHODS

Consider a non-linear system, for example (1). Suppose u(k) is the current approximate solu-
tion; a new approximate solution u(k+1) can be computed through the following steps (IN):
Step 1: Find the inexact Newton direction p(k) such that

‖F(u(k))− F ′(u(k))p(k)‖6�k‖F(u(k))‖ (10)

Step 2: Compute the new approximate solution

u(k+1) = u(k) − �(k)p(k) (11)

Here �k ∈ [0; 1) is a scalar that determines how accurately the Jacobian system needs to
be solved using, for example, Krylov subspace methods [4, 8]. �(k) is another scalar that
determines how far one should go in the selected inexact Newton direction [1]. IN has two
well-known features, namely, (a) if the initial guess is close enough to the desired solution
then the convergence is very fast provided that the �k’s are su�ciently small, and (b) such a
good initial guess is generally very di�cult to obtain, especially for non-linear equations that
have unbalanced non-linearities [9]. The step length �(k) is often determined by the components
with the strongest non-linearities, and this may lead to an extended period of stagnation in
the non-linear residual curve [10, 3].
In this paper, we apply IN to systems (4) or (9), instead of (1). The line search parameter

�(k) is determined using the preconditioned merit function

1
2 ‖F‖2

which, by design, has more balanced non-linearity than 1
2 ‖F‖2.

5. A DRIVEN CAVITY FLOW PROBLEM

In this section, we present some numerical results for the following two-dimensional driven
cavity �ow problem [11], using the velocity–vorticity formulation, in terms of the velocity u,
v, and the vorticity !, de�ned on the unit square �= (0; 1)×(0; 1),

−�u− @!
@y

= 0

−�v+ @!
@x

= 0

− 1
Re
�!+ u

@!
@x
+ v

@!
@y

= 0

(12)

Here Re is Reynolds number. The boundary conditions are:

• bottom, left and right: u= v=0;
• top: u = 1, v = 0.
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The boundary condition on ! is given by its de�nition:

!(x; y)= − @u
@y
+
@v
@x

We test several di�erent Reynolds numbers in the experiments and the numbers are given
in the tables below. The usual uniform mesh �nite di�erence approximation with the 5-point
stencil is used to discretize the boundary value problem. Upwinding is used for the divergence
(convective) terms and central di�erencing for the gradient (source) terms. To obtain a non-
linear algebraic system of equations F , we use natural ordering for the mesh points, and at each
mesh point, we arrange the knowns in the order of u, v, and !. The partitioning of F is through
the partitioning of the mesh points in a checkerboard fashion for both the �ne and the coarse
grids. The coarse-to-�ne interpolation is de�ned using the coarse grid bilinear �nite element
basis functions. overlap=1 is used for all the calculations. The implementation is done using
PETSc [12], and the results are obtained on a cluster of workstations. Double precision is
used throughout the computations. For both the coarse and the �ne grid problems, the initial
iterate is zero for u, v and !. We report here only the machine independent properties of the
algorithms.
We stop the global PIN iterations if

‖F(u(k))‖610−10‖F(u(0))‖

The same stopping condition is used for the coarse grid non-linear systems, which are solved
by a Newton–Krylov–Schwarz method.
The Jacobian systems are solved with GMRES, restarting at 30. The global linear iteration

for solving the global Jacobian system is stopped if the relative tolerance

‖F(u(k))−F′(u(k))p(k)‖610−3‖F(u(k))‖

is satis�ed. We remark that, unlike the Jacobian matrix of F , the Jacobian matrix F′ is
usually not sparse and cannot be computed explicitly. Following the techniques developed in
Reference [5], we approximate F′ on each subdomain by J−1Si J , where J =F

′ and JSi is the
restriction of J on the subdomain Si. Similarly on the coarse grid, we use J−1Sc J , where JSc
is the restriction of J on the coarse grid. We do not use any linear preconditioning when
solving the Jacobian problems.
At the kth global non-linear iteration, non-linear subsystems

FSi(u
(k) − g(k)i )=0

must be solved. We use the standard IN with a cubic line search for such systems with initial
guess g(k)i;0 = 0. The local non-linear iteration in subdomain Si is stopped if the following
condition is satis�ed:

‖FSi(g(k)i;l )‖610−3‖FSi(g(k)i;0 )‖

In Tables I and II, we report the total number of global non-linear iterations, the total
number of linear iterations, and the average number of linear iterations per non-linear iteration.
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Table I. Re=103, �ne mesh size 64×64, coarse mesh size 16×16.
Number of Global non-linear Average linear iteration
processors iterations per non-linear step

ASPIN(1) 2×2= 4 6 15
4×4= 16 6 22

ASPIN(2) 2×2= 4 5 11
4×4= 16 7 12

Table II. Re=104, �ne mesh size 128×128, coarse mesh size 32×32.
Number of Global non-linear Average linear iteration
processors iterations per non-linear step

ASPIN(1) 2×2= 4 10 17
4×4= 16 7 24

ASPIN(2) 2×2= 4 8 15
4×4= 16 7 21

For this particular test problem, the non-linearity is determined mostly by the Reynolds num-
ber. As Re increases the non-linear system becomes increasingly di�cult to solve with the
standard inexact Newton method [5]. However, as shown in Tables I and II, ASPIN is not
very sensitive to the increase of Re.
As expected from the classical theory of additive Schwarz methods, the one-level algorithm,

ASPIN(1), is not scalable with respective to the number of subdomains, which is the same
as the number of processors in our parallel implementation. This is re�ected in the average
number of global linear iterations. By adding a coarse space, as in ASPIN(2), the number of
global linear iterations can be reduced. For example, in Table I, when we increase the number
of processors from 4 to 16, the average number of global linear iterations per non-linear step
stays nearly the same. We observe, in Table II, that when Re is high the size of the coarse
grid has to be su�ciently �ne in order for the coarse grid problem to be solvable. In practice,
a good coarse grid size is usually not easy to determine since it depends not only on the
number of subdomains but also on the Reynolds number.
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